Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Exp Clin Cancer Res ; 43(1): 110, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605423

RESUMEN

BACKGROUND: Metastasis is the leading cause of cancer-related death in non-small cell lung cancer (NSCLC) patients. We previously showed that low HERC5 expression predicts early tumor dissemination and a dismal prognosis in NSCLC patients. Here, we performed functional studies to unravel the mechanism underlying the "metastasis-suppressor" effect of HERC5, with a focus on mitochondrial metabolism pathways. METHODS: We assessed cell proliferation, colony formation potential, anchorage-independent growth, migration, and wound healing in NSCLC cell line models with HERC5 overexpression (OE) or knockout (KO). To study early tumor cell dissemination, we used these cell line models in zebrafish experiments and performed intracardial injections in nude mice. Mass spectrometry (MS) was used to analyze protein changes in whole-cell extracts. Furthermore, electron microscopy (EM) imaging, cellular respiration, glycolytic activity, and lactate production were used to investigate the relationships with mitochondrial energy metabolism pathways. RESULTS: Using different in vitro NSCLC cell line models, we showed that NSCLC cells with low HERC5 expression had increased malignant and invasive properties. Furthermore, two different in vivo models in zebrafish and a xenograft mouse model showed increased dissemination and metastasis formation (in particular in the brain). Functional enrichment clustering of MS data revealed an increase in mitochondrial proteins in vitro when HERC5 levels were high. Loss of HERC5 leads to an increased Warburg effect, leading to improved adaptation and survival under prolonged inhibition of oxidative phosphorylation. CONCLUSIONS: Taken together, these results indicate that low HERC5 expression increases the metastatic potential of NSCLC in vitro and in vivo. Furthermore, HERC5-induced proteomic changes influence mitochondrial pathways, ultimately leading to alterations in energy metabolism and demonstrating its role as a new potential metastasis suppressor gene.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Pez Cebra , Regulación hacia Abajo , Ratones Desnudos , Proteómica , Metabolismo Energético , Proliferación Celular , Línea Celular Tumoral , Movimiento Celular , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo
2.
Clin Exp Metastasis ; 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38281256

RESUMEN

The concept of liquid biopsy analysis has been established more than a decade ago. Since the establishment of the term, tremendous advances have been achieved and plenty of methods as well as analytes have been investigated in basic research as well in clinical trials. Liquid biopsy refers to a body fluid-based biopsy that is minimal-invasive, and most importantly, allows dense monitoring of tumor responses by sequential blood sampling. Blood is the most important analyte for liquid biopsy analyses, providing an easily accessible source for a plethora of cells, cell-derived products, free nucleic acids, proteins as well as vesicles. More than 12,000 publications are listed in PubMed as of today including the term liquid biopsy. In this manuscript, we critically review the current implications of liquid biopsy, with special focus on circulating tumor cells, and describe the hurdles that need to be addressed before liquid biopsy can be implemented in clinical standard of care guidelines.

3.
Cell Rep ; 40(9): 111298, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36044866

RESUMEN

Circulating tumor cells (CTCs) are the seeds of distant metastasis, and the number of CTCs detected in the blood of cancer patients is associated with a worse prognosis. CTCs face critical challenges for their survival in circulation, such as anoikis, shearing forces, and immune surveillance. Thus, understanding the mechanisms and interactions of CTCs within the blood microenvironment is crucial for better understanding of metastatic progression and the development of novel treatment strategies. CTCs interact with different hematopoietic cells, such as platelets, red blood cells, neutrophils, macrophages, natural killer (NK) cells, lymphocytes, endothelial cells, and cancer-associated fibroblasts, which can affect CTC survival in blood. This interaction may take place either via direct cell-cell contact or through secreted molecules. Here, we review interactions of CTCs with blood cells and discuss the potential clinical relevance of these interactions as biomarkers or as targets for anti-metastatic therapies.


Asunto(s)
Células Neoplásicas Circulantes , Biología , Biomarcadores de Tumor , Células Sanguíneas , Recuento de Células , Células Endoteliales/patología , Humanos , Metástasis de la Neoplasia/patología , Células Neoplásicas Circulantes/patología , Microambiente Tumoral
4.
Clin Chem ; 68(7): 973-983, 2022 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-35652463

RESUMEN

BACKGROUND: Revealing molecular mechanisms linked to androgen receptor activity can help to improve diagnosis and treatment of prostate cancer. Retinoic acid-induced 2 (RAI2) protein is thought to act as a transcriptional coregulator involved in hormonal responses and epithelial differentiation. We evaluated the clinical relevance and biological function of the RAI2 protein in prostate cancer. METHODS: We assessed RAI2 gene expression in the Cancer Genome Atlas prostate adenocarcinoma PanCancer cohort and protein expression in primary tumors (n = 199) by immunohistochemistry. We studied RAI2 gene expression as part of a multimarker panel in an enriched circulating tumor cell population isolated from blood samples (n = 38) of patients with metastatic prostate cancer. In prostate cancer cell lines, we analyzed the consequences of androgen receptor inhibition on RAI2 protein expression and the consequences of RAI2 depletion on the expression of the androgen receptor and selected target genes. RESULTS: Abundance of the RAI2 protein in adenocarcinomas correlated with the androgen receptor; keratins 8, 18, and 19; and E-cadherin as well as with an early biochemical recurrence. In circulating tumor cells, detection of RAI2 mRNA significantly correlated with gene expression of FOLH1, KLK3, RAI2, AR, and AR-V7. In VCaP and LNCaP cell lines, sustained inhibition of hormone receptor activity induced the RAI2 protein, whereas RAI2 depletion augmented the expression of MME, STEAP4, and WIPI1. CONCLUSIONS: The RAI2 protein functions as a transcriptional coregulator of the androgen response in prostate cancer cells. Detection of RAI2 gene expression in blood samples from patients with metastatic prostate cancer indicated the presence of circulating tumor cells.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Células Neoplásicas Circulantes , Neoplasias de la Próstata , Línea Celular Tumoral , Proteínas Co-Represoras , Humanos , Masculino , Células Neoplásicas Circulantes/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/genética , Tretinoina/farmacología
5.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209696

RESUMEN

Up to 40% of advance lung, melanoma and breast cancer patients suffer from brain metastases (BM) with increasing incidence. Here, we assessed whether circulating tumor cells (CTCs) in peripheral blood can serve as a disease surrogate, focusing on CD44 and CD74 expression as prognostic markers for BM. We show that a size-based microfluidic approach in combination with a semi-automated cell recognition system are well suited for CTC detection in BM patients and allow further characterization of tumor cells potentially derived from BM. CTCs were found in 50% (7/14) of breast cancer, 50% (9/18) of non-small cell lung cancer (NSCLC) and 36% (4/11) of melanoma patients. The next-generation sequencing (NGS) analysis of nine single CTCs from one breast cancer patient revealed three different CNV profile groups as well as a resistance causing ERS1 mutation. CD44 and CD74 were expressed on most CTCs and their expression was strongly correlated, whereas matched breast cancer BM tissues were much less frequently expressing CD44 and CD74 (negative in 46% and 54%, respectively). Thus, plasticity of CD44 and CD74 expression during trafficking of CTCs in the circulation might be the result of adaptation strategies.


Asunto(s)
Antígenos de Diferenciación de Linfocitos B/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundario , Antígenos de Histocompatibilidad Clase II/genética , Receptores de Hialuranos/genética , Células Neoplásicas Circulantes/metabolismo , Antígenos de Diferenciación de Linfocitos B/metabolismo , Biomarcadores de Tumor , Neoplasias Encefálicas/diagnóstico , Neoplasias de la Mama/patología , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Femenino , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Receptores de Hialuranos/metabolismo , Inmunohistoquímica , Masculino , Mutación , Secuenciación Completa del Genoma
6.
Mol Oncol ; 14(5): 1001-1015, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32246814

RESUMEN

The combination of liquid biomarkers from a single blood tube can provide more comprehensive information on tumor development and progression in cancer patients compared to single analysis. Here, we evaluated whether a combined analysis of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and circulating cell-free microRNA (miRNA) in total plasma and extracellular vesicles (EV) from the same blood sample is feasible and how the results are influenced by the choice of different blood tubes. Peripheral blood from 20 stage IV melanoma patients and five healthy donors (HD) was collected in EDTA, Streck, and Transfix tubes. Peripheral blood mononuclear cell fraction was used for CTC analysis, whereas plasma and EV fractions were used for ctDNA mutation and miRNA analysis. Mutations in cell-free circulating DNA were detected in 67% of patients, with no significant difference between the tubes. CTC was detected in only EDTA blood and only in 15% of patients. miRNA NGS (next-generation sequencing) results were highly influenced by the collection tubes and could only be performed from EDTA and Streck tubes due to hemolysis in Transfix tubes. No overlap of significantly differentially expressed miRNA (patients versus HD) could be found between the tubes in total plasma, whereas eight miRNA were commonly differentially regulated in the EV fraction. In summary, high-quality CTCs, ctDNA, and miRNA data from a single blood tube can be obtained. However, the choice of blood collection tubes is a critical pre-analytical variable.


Asunto(s)
ADN Tumoral Circulante/sangre , Biopsia Líquida/instrumentación , Biopsia Líquida/métodos , Melanoma/sangre , MicroARNs/sangre , Anciano , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestructura , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Melanoma/patología , MicroARNs/genética , Microscopía Electrónica de Transmisión , Mutación , Estadificación de Neoplasias , Células Neoplásicas Circulantes/metabolismo
7.
Neuro Oncol ; 22(7): 955-966, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32064501

RESUMEN

BACKGROUND: Brain metastasis (BM) in non-small-cell lung cancer (NSCLC) has a very poor prognosis. Recent studies have demonstrated the importance of cell adhesion molecules in tumor metastasis. The aim of our study was to investigate the role of activated leukocyte cell adhesion molecule (ALCAM) in BM formation in NSCLC. METHODS: Immunohistochemical analysis was performed on 143 NSCLC primary tumors and BM. A correlation between clinicopathological parameters and survival was developed. Biological properties of ALCAM were assessed in vitro by gene ablation using CRISPR/Cas9 technology in the NCI-H460 NSCLC cell line and in vivo by intracranial and intracardial cell injection of NCI-H460 cells in NMRI-Foxn1nu/nu mice. RESULTS: ALCAM expression was significantly upregulated in NSCLC brain metastasis (P = 0.023) with a de novo expression of ALCAM in 31.2% of BM. Moderate/strong ALCAM expression in both primary NSCLC and brain metastasis was associated with shortened survival. Functional analysis of an ALCAM knock-out (KO) cell line showed a significantly decreased cell adhesion capacity to human brain endothelial cells by 38% (P = 0.045). In vivo studies showed significantly lower tumor cell dissemination in mice injected with ALCAM-KO cells in both mouse models, and both the number and size of BM were significantly diminished in ALCAM depleted tumors. CONCLUSIONS: Our findings suggest that elevated levels of ALCAM expression promote BM formation in NSCLC through increased tumor cell dissemination and interaction with the brain endothelial cells. Therefore, ALCAM could be targeted to reduce the occurrence of BM. KEY POINTS: 1. ALCAM expression associates with poor prognosis and brain metastasis in NSCLC.2. ALCAM mediates interaction of NSCLC tumor cells with brain vascular endothelium.3. ALCAM might represent a novel preventive target to reduce the occurrence of BM in NSCLC.


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Molécula de Adhesión Celular del Leucocito Activado , Animales , Neoplasias Encefálicas/secundario , Células Endoteliales , Endotelio Vascular , Femenino , Humanos , Masculino , Ratones
8.
Cancers (Basel) ; 12(2)2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32069934

RESUMEN

Circulating tumor cells (CTCs) are promising tools for risk prediction and the monitoring of response to therapy in cancer patients. Within the EU/IMI CANCER-ID consortium, we validated CTC enrichment systems for future inclusion into clinical trials. Due to the known heterogeneity of markers expressed on CTCs, we tested the Parsortix® system (ANGLE plc) which enables label-independent CTC enrichment from whole blood based on increased size and deformability of these tumor cells compared to leukocytes. We performed extensive comparisons both with spiked-in blood models (i.e., MDA-MB-468 tumor cell line cells spiked at very low concentration into blood from healthy donors) and validated the protocol on actual clinical samples from breast, lung, and gastrointestinal cancer patients to define optimal conditions for CTC enrichment. Multiple parameters including cassette gap, separation pressure, and cell fixatives were compared in parallel. Also, the compatibility of blood collection tubes with whole genome amplification of isolated tumor cells was demonstrated and we furthermore established a workflow for semi-automated CTC detection using a quantitative cell imager. The established workflow will contribute to supporting the use of size-based CTC enrichment platforms in clinical trials testing the clinical validity and utility of CTCs for personalized medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA